
 

 

 

Abstract— This paper presents a new multiobjective 

optimization technique based on genetic algorithm for the time-cost 

construction problem. The chromosome representation of the 

problem is based on random keys. The schedules are constructed 

using a priority rule in which the priorities are defined by the genetic 

algorithm. Schedules are constructed using a procedure that generates 

parameterized active schedules. In construction projects, time and 

cost are the most important factors to be considered. In this paper, a 

new hybrid genetic algorithm is developed for the optimization of the 

two objectives time and cost. The results indicate that this approach 

could assist decision-makers to obtain good solutions for project 

duration and total cost. 
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I. INTRODUCTION  

 

The Multiobjective Optimization Problem (also called 

multicriteria optimization, multiperformance or vector 

optimization problem) can then be defined (in words) as the 

problem of finding [37]: 

 

“a vector of decision variables which satisfies constraints 

and optimizes a vector function whose elements represent the 

objective functions. These functions form a mathematical 

description of performance criteria which are usually in 

conflict with each other. Hence, the term “optimize” means 

finding such a solution which would give the values of all the 

objective functions acceptable to the decision maker.” 

 

The mathematical definition of a multiobjective problem 

(MOP) is important in providing a foundation of 

understanding between the interdisciplinary nature of deriving 

possible solution techniques (deterministic, stochastic); i.e., 

search algorithms [38]. 

More precisely, multiobjective problems (MOPs) are those 

problems where the goal is to optimize k objective functions 

simultaneously. This may involve the maximization of all k 

functions, the minimization of all k functions or a combination 

of maximization and minimization of these k functions [38]. 

 

 
J. Magalhães-Mendes is with the Civil Engineering Department, School of 

Engineering, Polytechnic of Porto, Porto, Portugal (e-mail: jjm@isep.ipp.pt). 
 

Multiobjective optimization deals with solving optimization 

problems which involve multiple objectives. We can say that 

there are two types of methods for solving problems with 

multi-objective optimization: the classical methods and 

methods based on evolutionary algorithms. 

The disadvantages of the classical methods are shown in 

[28]: 

 Only one non-dominated solution is obtained by 

each execution of the algorithm. It means that in 

order to get a set of solutions, it should be run 

many times; 

 Some of them require some kind of information of 

the problem treated; 

 Some of them are sensitive to the shape of the 

Pareto frontier, so in non-convex ones, they cannot 

find solutions; 

 The dispersion of the founded Pareto solutions 

depends on the efficiency of the monocriteria 

optimizator; 

 In problems that contain stochasticities, classical 

methods are not appropriate; 

 Problems with discrete domain cannot be solved 

by classical methods, neither in the multiobjective 

case. Consequently, the problem treated in the 

present article, discrete, could not be solved by this 

kind of methods. 

All this disadvantages are overcome with evolutionary 

multiobjective methods such as genetic algorithms [39]. 

With evolutionary techniques being used for single-

objective optimization for over two decades, the incorporation 

of more than one objective in the fitness function has finally 

gained popularity in the research [3].  

In principle, there is no clear definition of an „„optimum‟‟ in 

multiobjective optimization (MOP) as in the case of single-

objective issues; and there even does not necessarily have to 

be an absolutely superior solution corresponding to all 

objectives due to the incommensurability and conflict among 

objectives. Since the solutions cannot be simply compared 

with each other, the „„best‟‟ solution generated from 

optimization would correspond to human decision-makers 

subjective selection from a potential solution pool, in terms of 

their particulars [10]. 

The classical methods reduce the MOP to a scalar 

optimization optimization by using multiobjective weighting 

(MOW) or a utility function (multiobjective utility analysis). 

Multiobjective weighting allows decisions makers to 
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incorporate the priority of each objective into decision 

making. Mathematically, the solutions obtained by equally 

weighting all objectives may provide the least objective 

conflicts, but in most cases, each objective is first optimized 

separately and the overall objective value is evaluated 

depending on the weighting factors. The weakness of MOW is 

that the overall optimum is usually at the dominating objective 

only [6].  

 

II. THE TIME-COST OPTIMIZATION CONSTRUCTION PROBLEM 

 

In a construction project, there are two main factors, such as 

project duration and project cost. The activity duration is a 

function of resources (i.e. crew size, equipments and 

materials) availability. On the other hand, resources demand 

direct costs. Therefore, the relationship between project time 

and direct cost of each activity is a monotonously decreasing 

curve. It means if activity duration is compressed then that 

leads to an increase in resources and so that direct costs. But, 

project indirect costs increase with the project duration. In 

general, for a project, the total cost is the sum of direct and 

indirect costs and exists an optimum duration for the least 

cost, see Fig.1. Hence, relationship between project time and 

cost is trade-off [36]. 

Several approaches to solve the TCO problem have been 

proposed in the last years: mathematical, heuristic and search 

methods. 

 

 

 
 

Fig. 1. Project time and cost curve. 

 

 

A. Mathematical Methods 

 

Several mathematical models such as linear programming 

(Kelley [12]; Hendrickson and Au [4]; Pagnoni [2]), integer 

programming, or dynamic programming (Butcher [33]; 

Robinson [8]; Elmaghraby [27]; De et al. [25]) and LP/IP 

hybrid (Liu et al. [21]; Burns et al. [29]), Meyer and Shaffer 

[31] and Patterson and Huber [14] use mixed integer 

programming. However, for large number of activity in 

network and complex problem, integer programming needs a 

lot of computation effort (Feng et al. [6]).  

 

B. Heuristic Methods 

 

Heuristic algorithms are not considered to be in the category 

of optimization methods. They are algorithms developed to 

find an acceptable near optimum solution. Heuristic methods 

are usually algorithms easy to understand which can be 

applied to larger problems and typically provide acceptable 

solutions (Hegazy [30]). However, they have lack 

mathematical consistency and accuracy and are specific to 

certain instances of the problem (Fondahl [19]; Prager [32]; 

Siemens [23] and Moselhi [24]) are some of the research 

studies that have utilized heuristic methods for solving TCO 

problems. 

 

C. Search Methods 

 

Some researchers have tried to introduce evolutionary 

algorithms to find global optima such as genetic algorithm 

(GA) (Feng et al. [6]; Gen and Cheng [22]; Zheng et al. [10]; 

Zheng and Ng [9]; the particle swarm optimization algorithm 

(Yang [11]), ant colony optimization (ACO) (Xiong and 

Kuang [34]; Ng and Zhang [29]; Afshar et al. [1]) and 

harmony search (HS) (Geem [36]). 

 

In a certain way we can say that the work of Zadeh [20] is 

the first to advocate the assignment of weights to each 

objective function and combined them into a single-object 

function. More recently, Gen and Cheng [22] adopted the 

adaptive weight approach (AWA) in construction TCO 

problem (also referred to as GC approach hereafter). 

In the GC approach Gen and Cheng [22] proposed the 

following formulas: 

 
max max,c tZ Z Z  (1) 

min min,c tZ Z Z  (2) 

 

where, 
max

cZ = maximal value for total cost in the current 

population;  
max

tZ = maximal value for time in the current population;  
min

cZ = minimal value for total cost in the current 

population; 
min

tZ = minimal value for time in the current population. 

 
max min max min1/ ( ), 1/ ( )c c c t t tw Z Z w Z Z  (3) 

 
max max( ) ( ) ( )c c c t t tf x w Z Z w Z Z  (4) 

 

In 2004, Zheng et al. [10] proposed the modified weight 

approach (MAWA) to deal with the multi-objective problem. 
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Under the MAWA, the adaptive weights are formulated 

through the following four conditions: 

 

1) For max

tZ is not equal to min

tZ  and max

cZ  is not equal to 

min

cZ  

 
min

max min

c
c

c c

Z
v

Z Z
 (5) 

 
min

max min

t
t

t t

Z
v

Z Z
 (6) 

 

c tv v v  (7) 

/c cw v v  (8) 

/t tw v v  (9) 

1c tw w  (10) 

 

2) For max

tZ = min

tZ  and max

cZ  = min

cZ  

 

0.5c tw w  (11) 

 

3) For max

tZ = min

tZ  and max

cZ  min

cZ  

 

0.1, 0.9c tw w  (12) 

 

4) For max

tZ min

tZ  and max

cZ  min

cZ  

 

0.9, 0.1c tw w  (13) 

 

Zheng et al. [10] proposed a fitness formula in accordance 

with the proposed adaptive weight: 

 

 
max max

max min max min

( ) ( )
( )

( ) ( )

t t c c
t c

t t c c

Z Z Z Z
f x w w

Z Z Z Z

 (14) 

 

where, 

 

is a small positive random number between 0 and 1. 

max

cZ  = maximal value for total cost in the current 

population;  
max

tZ = maximal value for time in the current population;  

min

cZ = minimal value for total cost in the initial 

population; 
min

tZ = minimal value for time in the initial population; 

cZ    = represents the total cost of the x
th

 solution in current 

population; 

tZ   = represents the time of the x
th

 solution in current 

population. 

 

 

This study uses the fitness formula proposed by Gen and 

Cheng [22] where, 

 
max

cZ = maximal value for total cost in the current 

chromosome;  
max

tZ = maximal value for time in the current chromosome;  

min

cZ = minimal value for total cost in the initial 

population; 
min

tZ = minimal value for time in the initial population; 

cZ     = represents the total cost of the x
th 

solution in current 

chromosome; 

tZ   = represents the time of the x
th

 solution in current 

chromosome. 

 

III. THE GA-BASED APPROACH 

 

The approach presented in this paper is based on a genetic 

algorithm to perform its optimization process. Fig. 2 shows the 

architecture of approach. 

The approach combines a genetic algorithm, a schedule 

generation scheme and a local search procedure. The genetic 

algorithm is responsible for evolving the chromosomes which 

represent the priorities of the activities. 

For each chromosome the following four phases are 

applied: 

 

1) Transition parameters - this phase is responsible 

for the process transition between first level and 

second level; 

2) Schedule parameters - this phase is responsible for 

transforming the chromosome supplied by the 

genetic algorithm into the priorities of the 

activities and delay time; 

3) Schedule generation - this phase makes use of the 

priorities and the delay time and constructs 

schedules; 

4) Schedule improvement - this phase makes use of a 

local search procedure to improve the solution 

obtained in the schedule generation phase. 

 

After a schedule is obtained, the quality is processed 

feedback to the genetic algorithm. Fig. 2 illustrates the 

sequence of phases applied to each chromosome. Details about 

each of these phases will be presented in the next sections. 
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Fig. 2. Architecture of the approach. 

 

A. GA Transition Process 

 

The Genetic Algorithms (GAs) are search algorithms which 

are based on the mechanics of natural selection and genetics to 

search through decision space for optimal solutions. One 

fundamental advantaged of GAs from traditional methods is 

described by Goldberg [7]: in many optimization methods, we 

move gingerly from a single solution in the decision space to 

the next using some transition rule to determine the next 

solution. 

First of all, an initial population of potential solutions 

(individual) is generated randomly. A selection procedure 

based on a fitness function enables to choose the individual 

candidate for reproduction. The reproduction consists in 

recombining two individuals by the crossover operator, 

possibly followed by a mutation of the offspring. Therefore, 

from the initial population a new generation is obtained. From 

this new generation, a second new generation is produced by 

the same process and so on. The stop criterion is normally 

based on the number of generations. 

The GA based-approach uses a random key alphabet U (0, 

1) and an evolutionary strategy identical to the one proposed 

by Goldberg [7].  

Each chromosome represents a solution to the problem and 

it is encoded as a vector of random keys (random numbers). 

Each solution encoded as initial chromosome (first level) is 

made of mn+n genes where n is the number of activities and 

m is the number of execution modes, see Fig. 3.  

The called first level as the capacity to solving the multi-

mode resource constrained project scheduling problem 

(MRCPSP) [16, 18]. 

In this case of study we do not consider the requirements to 

the type and number of resources needed for construction 

mode for each activity as well as the maximum number of 

available resources. 

The transition process between first level and second level 

consists in choosing the option or construction mode mj for 

each activity j. Using this process we obtain the solution 

chromosome (second level) composed by 2n genes, see Fig.4.  

The called second level as the capacity to solving the 

resource constrained project scheduling problem (RCPSP) [16, 

18].  

In this case of study we do not consider the requirements to 

the type and number of resources needed for each activity as 

well as the maximum number of available resources. 

 

 

Fig. 3. Chromosome structure. 

After, we evaluate the quality (fitness) of the solution 

chromosome. 

 

 

 

A
c
ti

v
it

y
 1

Mode 1 Gene 11

Mode 2 Gene 12

… …

Mode m Gene 1m

Delay 1 Gene 1m+1
A

c
ti

v
it

y
 2

Mode 1 Gene 21

Mode 2 Gene 22

… …

Mode m Gene 2m

Delay 2 Gene 2m+1

… …

A
c
ti

v
it

y
 n

Mode 1 Gene n1

Mode 2 Gene n2

… …

Mode m Gene nm

Delay n Gene nm+1

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 662



 

 

 

Fig. 4. Transition process between first and second level. 

 

 

B. GA Decoding 

 

A real-coded GA is adopted in this paper. Compared with 

the binary-code GA, the real-coded GA has several distinct 

advantages, which can be summarized as follows (Y.-Z. Luo 

et al. [35]): 

 It is more convenient for the real-coded GA to denote 

large scale numbers and search in large scope, and 

thus the computation complexity is amended and the 

computation efficiency is improved; 

 The solution precision of the real-coded GA is much 

higher than that of the binary-coded GA; 

 As the design variables are coded by floating 

numbers in classical optimization algorithms, the 

real-coded GA is more convenient for combination 

with classical optimization algorithms. 

 

The priority decoding expression uses the following 

expression:  

 

1
1,...,

2

mjj

j

geneLLP
PRIORITY j n

LCP
 (15) 

where,  

 

[1] LLPj  is the longest length path from the beginning 

of the activity j to the end of the project;  

[2] LCP is the length along the critical path of the 

project [15]; 

[3] mj is the gene of the selected mode for activity j. 

 

The gene jm+1 is used to determine the delay time when 

scheduling the activities. The delay time used by each activity 

is given by the following expression: 

 

1 1.5jmDelay time gene MaxDur  (16) 

 

where MaxDur is the maximum duration of all activities. 

The factor 1.5 is obtained after some experimental tuning. 

A maximum delay time equal to zero is equivalent to 

restricting the solution space to non-delay schedules and a 

maximum delay time equal to infinity is equivalent to 

allowing active schedules. To reduce the solution space is 

used the value given by formula (16), see Gonçalves et al. 

[13]. 

 

C. Construction of a Schedule 

 

Schedule generation schemes (SGS) are the core of most 

heuristic solution procedures for project scheduling. SGS start 

from scratch and build a feasible schedule by stepwise 

extension of a partial schedule.  

There are two different classics methods SGS available. 
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They can be distinguished into activity and time 

incrementation. The so called serial SGS performs activity-

incrementation and the so called parallel SGS performs time-

incrementation. 

A third method for schedule generating can be applied: the 

parameterized active schedules. This type of schedule consists 

of schedules in which no resource is kept idle for more than a 

predefined period if it could start processing some activity. If 

the predefined period is set to zero, then we obtain a non-delay 

schedule. This type of SGS is used on this work. 

 

 

 

Fig. 5. Types of schedules (adapted from Mendes [18]). 

Fig. 5 presents the relationship diagram of various 

schedules with regard to optimal schedules. 

 

D. Local Search 

 

Local search algorithms move from solution to solution in 

the space of candidate solutions (the search space) until a 

solution optimal or a stopping criterion is found. In this paper 

it is applied backward and forward improvement based on 

Klein [27]. 

Initially it is constructed a schedule by planning in a 

forward direction starting from the project‟s beginning. After 

it is applied backward and forward improvement trying to get 

a better solution. The backward planning consists in reversing 

the project network and applying the scheduling generator 

scheme. A detailed example is described by Mendes [15].  

 

E. Evolutionary Strategy 

 

There are many variations of genetic algorithms obtained by 

altering the reproduction, crossover, and mutation operators. 

Reproduction is a process in which individual (chromosome) 

is copied according to their fitness values (makespan). 

Reproduction is accomplished by first copying some of the 

best individuals from one generation to the next, in what is 

called an elitist strategy. 

 In this paper the fitness proportionate selection, also known 

as roulette-wheel selection, is the genetic operator for 

selecting potentially useful solutions for reproduction. The 

characteristic of the roulette wheel selection is stochastic 

sampling. 

The fitness value is used to associate a probability of 

selection with each individual chromosome. If fi is the fitness 

of individual i in the population, its probability of being 

selected is,       

 

1

, 1,...,i
i N

i

i

f
p i n

f

 (17) 

 

A roulette wheel model is established to represent the 

survival probabilities for all the individuals in the population. 

Then the roulette wheel is rotated for several times [7]. 

After selecting, crossover may proceed in two steps. First, 

members of the newly selected (reproduced) chromosomes in 

the mating pool are mated at random. Second, each pair of 

chromosomes undergoes crossover as follows: an integer 

position k along the chromosome is selected uniformly at 

random between 1 and the chromosome length l. Two new 

chromosomes are created swapping all the genes between k+1 

and l, see Fig. 6. 

 

 

 

Fig. 6. Crossover example (adapted from Mendes [40]). 

 

The mutation operator preserves diversification in the 

search.  This operator is applied to each offspring in the 

population with a predetermined probability. We assume that 

the probability of the mutation in this paper is 5%.  

 

F. GA Configuration 

 

Though there is no straightforward way to configure the 

parameters of a genetic algorithm, we obtained good results 

with values: population size of 5 × number of activities in the 

problem; mutation probability of 0.05; top (best) 1% from the 

previous population chromosomes are copied to the next 

generation; stopping criterion of 50 generations. 
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IV. CASE STUDY 

 

In order to compare the proposed RKV-TCO (Random Key 

Variant for Time-Cost Optimization) approach, a case study of 

seven activities proposed initially by Liu et al. [21] was used. 

 

 

 

A project of seven activities proposed initially by Liu et al. 

[21] and fitted by Zheng et al. [10] is presented in Table 1 

with available activity options and corresponding durations 

and costs. Indirect cost rate was $1500/day.  

 

 

 

Table 1 Time and cost for each option/mode of activity. 

Activity description Activity 

number 

Precedent 

activity 

Option/ 

Mode 

Duration 

(days) 

Direct 

cost ($) 

Site preparation 1 - 1 14 23,000 

   2 20 18,000 

   3 24 12,000 

Forms and rebar 2 1 1 15 3,000 

   2 18 2,400 

   3 20 1,800 

   4 23 1,500 

   5 25 1,000 

Excavation 3 1 1 15 4,500 

   2 22 4,000 

   3 33 3,200 

Precast concrete girder 4 1 1 12 45,000 

   2 16 35,000 

   3 20 30,000 

Pour foundation and piers 5 2, 3 1 22 20,000 

   2 24 17,500 

   3 28 15,000 

   4 30 10,000 

Deliver PC girders 6 4 1 14 40,000 

   2 18 32,000 

   3 24 18,000 

Erect girders 7 5, 6 1 9 30,000 

   2 15 24,000 

   3 18 22,000 

 

 

 

The robustness of the new proposed model RKV-TCO in 

the deterministic situation was compared with two other 

previous models:  

1) Gen and Cheng [22] using GC approach; 

2) Zheng et al. [10] using MAWA with a GA-based 

approach. 

 

The results of RKV-TCO approach are presented in Table 

2. The Table 2 shows the values of time and cost for the first 

six generations with Gen and Cheng [22] and Zheng et al. [10] 

approaches. The algorithm RKV-TCO obtains in the third 

generation a better solution than the works mentioned above. 

So, the RKV-TCO ends with project time = 63 days and cost 

=$225,500 in Table 2. 

Additionally we can also state that the RKV-TCO approach 

produces high-quality solutions quickly once needed only 3 

seconds to complete 50 generations.  

This computational experience has been performed on a 

computer with an Intel Core 2 Duo CPU T7250 @2.33 GHz 

and 1,95 GB of RAM. The algorithm proposed in this work 

has been coded in VBA under Microsoft Windows NT. 

 

V. CONCLUSIONS AND FURTHER RESEARCH 

 

A GA based-approach to solving the time-cost optimization 

problem has been proposed. The project activities have 

various construction modes, which reflect different ways of 

performing the activity, each mode having a different impact 

on the duration and cost of the project. The chromosome 

representation of the problem is based on random keys. The 

schedules are constructed using a priority rule in which the 
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priorities are defined by the genetic algorithm. The present 

approach provides an attractive alternative for the solution of 

the construction multi-objective optimization problems. 

Further research can be extended to the following 

directions: extended to more construction project problems to 

reinforce the results obtained namely expanding the 

optimization model to consider resource allocation and 

resource leveling constraints and expanding the number of 

modes of construction for each activity to turn a more 

complicated optimization problem. 

 

Table 2 Summary of the results. 

Approaches Generation 

number 

 

Criteria Calculation 

Time  
Time Cost ($) 

Gen and 

Cheng [22] 

0 83 243,500 Not 

reported 1 80 242,400 

2 80 261,900 

3 79 256,400 

4 79 256,400 

5 79 256,400 

Zheng et al. 

[10] 

0 73 251,500 Not 

reported 1 73 251,500 

2 73 251,500 

3 66 236,500 

4 66 236,500 

5 66 236,500 

This paper 0 73 233,000 3 (two) 

seconds  

for 50 

generations 

1 68 225,500 

2 63 225,500 
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